
PHYS 705: Classical Mechanics
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Energy Conservation and Time Invariance

Note the distinction:

0
f

t






is time invariant

0
df

dt


functional form of f 
does NOT change with a 
time shift:

t t 

is a constant in time

f  has a constant value 
in time

 , ,f q q t  , ,f q q t

f can still depends on 
time implicitly thru  ,q q
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Energy Conservation and Time Invariance in 
Configuration Space

Conservation of h (Jacobi Integral):

is conserved!h0
dh L

dt t


  



But, in general                                                   h, E is conserved
,

0
h E

t






shown in class (check class note)

, ,h E dh E

t dt

   
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...recall in general

Or, vice versa,                                                   h, E is NOT conserved                                                
,

0
h E

t








Energy Conservation and Time Invariance in 
Phase Space

Conservation of H (Hamiltonian):

and is conserved!H

   , ,dH q p H q p

dt t






Using the Hamilton’s Equation, we explicitly showed that:
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So, if      0
H

t





0

dH

dt


This is true for in Phase Space and not for              Configuration Space! ,H q p  ,h q q

It is an important property of dynamics in Phase Space.



Energy Conservation and Time Invariance

( ) cos sin

( )sin cos
o

o

x r r t l t

y r r t l t

 
 

  
   

HW#5 2.21
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Lab Frame (fixed)

x

y

r + ro

l

 ,x y

Rotating Frame ,r l

Point Transform between Lab and Rotating frames

cos sin

sin cos
or x t y t r

l x t y t

 
 

  
   



x

y

R+Ro

l

Energy Conservation and Time Invariance

      2 2 2 2 2, , 2 cos sin
2 2 o o

m k
L x y t T V x y x y r r x t y t          
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         2 2 2 2, ,
2 2o

m k
L r l t T V r r l r l r l          

      2 2 2 2 2, , 2 cos sin
2 2 o o

m k
E x y t T V x y x y r r x t y t          

         2 2 2 2, ,
2 2o

m k
E r l t T V r r l r l r l          

Lagrangian:

Total Energy:

Under a coord. transf., total energy of system CANNOT change

 ( , , ) , ,E x y t E r l t T V  



x

y

R+Ro

l

Energy Conservation and Time Invariance

      2 2 2 2 2, , 2 cos sin
2 2 o o

m k
h x y t x y x y r r x t y t        
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Jacobi Integral in the Lab Frame:

Since               does not depend on           and                          , identity trans 
does not depends on time, so        

( , )V x y ( , )x y  ( , ) ( , )x y x y

 , , ( , , )h x y t E x y t

Now, since                           ,                             , ,
0

L x y t

t





 , ,

0
dh x y t

dt


So,                                      is NOT conserved in the Lab frame. , , ( , , )h x y t E x y t



x

y

R+Ro

l

Energy Conservation and Time Invariance

        22 2 2 2 2 2,
2 2 2 o

m k m
h r l r l r l r r l       
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Jacobi Integral in Rotating Frame:

Now, since                          depends on time explicitly,( , ) ( , )x y r l

 , ( , , )h r l E r l t

However, now since                           ,                            
 , ,

0
L r l t

t





 ,

0
dh r l

dt


So,              is conserved in the Rotating frame but it is NOT
the total energy.

 ,h r l

,i.e., Jacobi Integral in           is not the 
total energy.                            

( , )r l



Energy Conservation and Time Invariance

Here is an example where

 , ,
0

E r l t

t





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         2 2 2 2, ,
2 2o

m k
E r l t T V r r l r l r l          

BUT, still varies in time (not 

conserved)

   , , , ,E r l t E x y t

0
dE

dt




Energy Conservation and Time Invariance

The Lagrangian is given by 

10

For the converse, consider just a mass m at the end of a spring with spring constant 

k moving in 1D

The total energy                                        is conserved.

2 2( )
2 2

m k
L x x x 

  2 2

2 2

m k
E x x x 

Now, let say, the system is observed in a moving frame with respect to the fixed 

frame with a constant speed a . The generalized coordinate in the moving frame is

q x at 



Energy Conservation and Time Invariance
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The Lagrangian in the moving frame is now explicitly depended on time,

By a direct back substitution with                      and                   , the total energy is 

still the total energy,

   2 2
( , )

2 2

m k
L q t q a q at   

The Total Energy in q is also explicitly dependent on time,

   2 2
( , )

2 2

m k
E q t q a q at   

x q at  x q a  

2 2( , ) ( , )
2 2q x

m k
E q t x x E x t  

So, E is still conserved.  So, here is the example, while we have

 ,
0

E q t

t





but 0

dE

dt




L, and h/E conservation (HW #5 2.21)
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3. Total energy E does not change under a coordinate transformation

But, the conservation of Jacobi Integral h will depend on a given 
coordinate system!

Only, if                       AND , then h = E. ( )iU U q 0i

t





r

2. h = E are not necessary the same!

1. To analyze conservation of h, recall that we assume the homogeneous 
form of the EL equation with a set of proper generalized coordinates, i.e., 

0
j j

d L L

dt q q

  
     

So, we need to start with an L with a set of proper generalized coordinates.
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Review



Here is the definition of the Legendre Transform for

Note that             is a function of s and we have to express                      in 

terms of s by inverting the relation:                         to get 

Legendre Transform

 dF x
s

dx


14

 F x

      G s sx s F x s 

 G s   F x s

 x s

is used when is more preferred over      itself as the 

variable of choice in the analysis.

 G s
 dF x

s
dx

 x



Hamiltonian Formulation

- Instead of using the Lagrangian,                               , we will introduce a new 

function that depends on       ,      , and  t:

 , ,j jL L q q t 

- This new function is call the Hamiltonian and it is defined by:

jq  , ,j jH H q p tjp

- Plugging in the definition for the generalized momenta: 

j
j

L
H q L

q


 





j
j

L
p

q



 

j jH p q L 

   with , ,j j j jq q q p

(Einstein’ s Convention: 

Repeated indices are summed)

( )sum
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- is the Legendre Transform of                      , ,jjH q p t

 , ,jjL q tq

x s

F G

q L q p

L H

G sx H q LF p

 
 

  

  



 





Hamiltonian Formulation

- Starting with

- Then, we require that                                     so that we should have 

- Taking the differential,

j j j jdH p dq q dp dL   

 , ,j jH H q p t

j j
j j

H H H
dH dq dp dt

q p t

  
  
  

( )sum

( )sum

j jH p q L 
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- Equating the two expressions for          and applying the EL equation  dH

j
j j

L d L
p

q dt q

  
     




to expand out the dL term…



Hamiltonian Formulation

Crank crank crank and dot dot dot, we get:

j
j

j
j

H
p

q

H
q

p

   
 





and H L

t t

 
 

 

These are called the Hamilton’s Equations of Motion and they are the desired 

set of equations giving the EOM in phase space. 
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Energy Conservation and Time Invariance in 
Phase Space

and is conserved!H

   , , , ,dH q p t H q p t

dt t






By taking the full-time derivative of and using the Hamilton’s 

Equation, we explicitly showed that:
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So, if      0
H

t





0

dH

dt


This is true for in Phase Space and not for                Configuration Space! , ,H q p t  , ,h q q t

It is an important property of dynamics in Phase Space.

 , ,H q p t



Hamiltonian Equations in Matrix (Symplectic) Notation

The Hamilton equation can then be written in a compact form:

H



η J

η


This is typically referred to as the matrix (or symplectic) notation for the 

Hamilton equations. 

if we define a anti-symmetric matrix    ,J2 2n n

 
   

0 I
J

I 0
where I is a identity matrixn n

0 is a            zero matrixn n

Note that the transpose of J is its own inverse (orthogonal):

T  
  
 

0 I
J

I 0
T T  

   
 

I 0
J J JJ

0 I
and
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Connection to Statistical Mechanics

- The Hamilton’s Equations describe motion in phase space

- a point in phase space                  uniquely determines the state of the system 

AND its future evolution.

 ,j jq p

- points nearby represent system states with similar but slightly different initial 

conditions.

- One can imagine a cloud of points (ensemble of systems) bounded by a closed 

surface S with nearly identical initial conditions moving in time.

 0 0,q p
 0 0' , 'q p

 ,q p
 ', 'q p

S

0t 

t t

20



Liouville’s Theorem

One can show as a direct consequence of the Hamilton Equation of Motion that 

the phase space volume of this cloud of points (ensemble of system) is 

conserved!

This is the Liouville’s Theorem:  collection of phase-space points move 

as an incompressible fluid.

0 !
dV

dt


 Phase space volume occupied by a set of points 

in phase space is constant in time.
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Canonical Transformation

Recall (from hw) that the Euler-Lagrange Equation is invariant for a point 

transformation:

Now, the idea is to find a generalized (canonical) transformation in phase 

space (not config. space) such that the Hamilton’s Equations are invariant !

( , )j jQ Q q t

i.e., if we have,  0,
j j

L d L

q dt q

  
     

then, 0,
j j

L d L

Q dt Q

  
     



( , , )

( , , )

j j

j j

Q Q q p t

P P q p t





(In general, we look for 
transformations which 
are invertible.)
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Canonical Transformation

We need to find the appropriate (canonical) transformation 

with which the Hamilton’s Equations are satisfied:

such that there exist a transformed Hamiltonian 

( , , ) and ( , , )j j j jQ Q q p t P P q p t 

( , , )K Q P t

j j
j j

K K
Q and P

P Q

 
  
 

 

(The form of the EOM must be invariant in the new coordinates.)

** It is important to further stated that the transformation considered 

must also be problem-independent meaning that              must be canonical 

coordinates for all system with the same number of dofs.

( , )Q P
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Canonical Transformation

To see what this condition might say about our canonical transformation, 

we need to go back to the Hamilton’s Principle:

Hamilton’s Principle: The motion of the system in configuration space is 

such that the action I has a stationary value for the actual path, .i.e.,

2

1

0
t

t

I Ldt  

Now, we need to extend this to the 2n-dimensional phase space

1. The integrant in the action integral must now be a function of the 

independent conjugate variable             and their derivatives

2. We will consider variations in all 2n phase space coordinates

,j jq p ,j jq p 
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Hamilton’s Principle in Phase Space

To rewrite the integrant in terms of                        , we will utilize the 

definition for the Hamiltonian (or the inverse Legendre Transform): 

2 2

1 1

( , , ) 0
t t

j j

t t

I Ldt p q H q p t dt          

Substituting this into our variation equation, we have

, , ,j j j jq p q p 

( , , )j j j jH p q L L p q H q p t      (Einstein’s sum rule) 
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Hamilton’s Principle in Phase Space

Applying the Hamilton’s Principle in Phase Space, the resulting dynamical 

equation is the Hamilton’s Equations.

26

j
j

H
p

q


 




j
j

H
q

p









Canonical Variables and Hamiltonian Formalism

 are independent variables in phase space on equal footing

In the Hamiltonian Formulation of Mechanics,

j j
j j

H H
q and p

p q

 
  
 

 

- As long as the new variables formally satisfy this abstract structure (the 

form of the Hamilton’s Equations).

,j jq p

 The Hamilton’s Equation for              are “symmetric” (symplectic),j jq p

 This elegant formal structure of mechanics affords us the freedom in 

selecting other appropriate canonical variables as our phase space 

“coordinates” and “momenta”
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Canonical Transformation

When is a transformation to           canonical?,Q P

( , , ) 0j jp q H q p t dt     

This means that we need to have the following variational conditions:

We need Hamilton’s Equations to hold in both systems

( , , ) 0j jP Q K Q P t dt     AND

 For this to be true simultaneously, the integrands must equal

 And, as argued in our previous lecture, this is also true if they are 

differed by a full-time derivative of a function of any of the phase space 

variables involved + time:

 ( , , ) ( , , ) , , , ,j j j j

dF
p q H q p t P Q K Q P t q p Q P t

dt
   
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Canonical Transformation

 Depending on the form of the generating functions (which pair of 

canonical variables being considered as the independent variables for 

the Generating Function), we can classify canonical transformations 

into four basic types.

F is called the Generating Function for the canonical 

transformation:

 ( , , ) ( , , ) , , , , (1) ( 9.11)j j j j

dF
p q H q p t P Q K Q P t q p Q P t G

dt
   

( , , )

( , , )
j j

j j

Q Q q p t

P P q p t


 

29

 ( , ) , :j j j jq p Q P



Canonical Transformation: 4 Types

 1 , ,j
j

F
p q Q t

q





 1 , ,j
j

F
P q Q t

Q


 


1F

K H
t


 



 ( , , ) ( , , ) , ,j j j j

dF
p q H q p t P Q K Q P t old new t

dt
   

( , , )

( , , )

j j

j j

Q Q q p t

P P q p t





Type 1:

 2 , ,j
j

F
p q P t

q





 2 , ,j
j

F
Q q P t

P





2F
K H

t


 



1( , , )qF QF t

Type 2:

2 ( , , ) i iF F tq Q PP 

 3 , ,j
j

F
q p Q t

p


 


 3 , ,j

j

F
P p Q t

Q


 


3F

K H
t


 


Type 3:

3( , , ) i iF F tp q pQ 

 4 , ,j
j

F
q p P t

p


 


 4 , ,j

j

F
Q p P t

P





4F
K H

t


 


Type 4:

4 ( , , ) i i i ipF F t q p PP Q  

varind

vardep
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